- pizzato

FY series safety switches with separate actuator with lock

Description

These switches are used on machines where the hazardous conditions remain for a while, even after the machines have been switched off, for example because of mechanical inertia of pulleys, saw disks, parts under pressure or with high temperatures. Thus, the switches can also be used if individual guards are only to be opened under certain conditions.
The versions with solenoid actuated NC contacts are considered interlocks with locking in accordance with ISO 14119, and the product's label is marked with the symbol shown.

Holding force of the locked actuator

The strong interlocking system guarantees a maximum actuator holding force of $F_{1 \text { max }}=2800 \mathrm{~N}$.

Heads and devices with variable orientation

The system can be variably configured by loosening the 4 screws on the head.
The key release device and the release button can also be rotated and secured independently of one another in steps of 90°. The device can thus assume 32 different configurations.

Non-detachable heads and release devices

The head and the release device can be rotated but cannot be detached from each other. This makes the switch more secure since the problem of incorrect assembly by the installer cannot occur; in addition, the risk of damage is lower (loss of small parts, penetration of dirt, etc.).

Key release device and escape release button

The key release device (auxiliary release) is used to permit unlocking of the actuator only by personnel in possession of the key. The device also functions with no power supply and, once actuated, prevents the guard from being locked.
The escape release button allows actuator release and immediate opening of the guard. Generally used in machines within which an operator could inadvertently become trapped, it faces towards the machine interior, to allow the operator to exit even in the event of a power failure. The button has two stable states and can be freely extended in length with suitable extensions (see accessories).
Both devices can be positioned on the four sides of the switch. As a result, it can be installed both towards the interior and towards the exterior of the machine.

The actuation head of this switch features a wide range of travel. In this way the guard can oscillate along the direction of insertion (4.5 mm) without causing unwanted machine shutdowns. This wide range of travel is available in all actuators in order to ensure maximum device reliability.

Integrated control devices

The switch is also available with integrated control devices, allowing up to two devices and related contact blocks, such as buttons, emergency stop buttons, indicator lights or selectors to be mounted.
The result is a compact solution with direct access to control devices without needing to install them separately on the switch panel or in their own housing.
The devices can be illuminated and, thanks to the PUSH-IN spring-operated connections, wiring is quick and intuitive.

Contact blocks with 4 contacts

Innovative contact block with 4 contacts, available in various contact configurations for monitoring the actuator or the solenoid (patented). The unit is supplied with captive screws and self-lifting clamping plates. Removable finger protection for eyelet terminal.
High-reliability electrical contacts with 4 contact points and double interruption.

Safety screws for actuators

As required by EN ISO 14119, the actuator must be fixed immovably to the guard frame. Pan head safety screws with one-way fitting are available for this purpose. With this screw type, the actuators cannot be removed or tampered by using common tools. See accessories on page 359 of the General Catalogue Safety 2021-2022.

LED display unit, type A

In the version with LED display unit of type A, two green LEDs are switched-on directly by the power supply of the solenoid. Wiring is not necessary.

LED display unit, types B and C

Three conduit entries

The switch is provided with three conduit entries in different directions. This allows its application in series connections or in narrow places. ronments where the maximum degree of protection is required for the housing.

Extended temperature range

These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+60^{\circ} \mathrm{C}$.
They can therefore be used for applications in cold stores, sterilisers, and other equipment operated in very low-temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

Laser engraving

All FY series switches are permanently marked with a special laser system. As a result, the marking remains legible even under extreme operating conditions. Thanks to this system that does not use labels, the loss of plate data is prevented and a greater resistance of the marking is achieved over time.

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several guards are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked guards in their position with a retaining force of approx. 30 N , stopping any vibrations or gusts of wind from opening them.

LED signalling lights

Thanks to the three threaded cable entries, the high luminosity LED signalling lights of the VF SL series can be installed on the switch.
The LED signalling lights can be be easily installed by screwing them on one of the conduit entries not used for electric cables. They can be used for many different purposes: for example, to signal, from a distance, whether the switch has been actuated whether the guard has closed correctly; or whether the guard is locked or unlocked.
For more information see chapter Accessories, on page 359 of the General Catalogue Safety 2021-2022.

FY series safety switches with separate actuator with lock

Selection diagram

Code structure

FY 60AD1D0A-LP30N01F20GK110T6V34

Contact blocks		
	Contacts activated by he solenoid \square	Contacts activated by the actuator ofe
60A	$1 \mathrm{NO}+1 \mathrm{NC}$	$1 \mathrm{NO}+1 \mathrm{NC}$
60B	2NC	$1 \mathrm{NO}+1 \mathrm{NC}$
60C	3NC	1 NC
60D	$1 \mathrm{NO}+1 \mathrm{NC}$	2NC
60E	$1 \mathrm{NO}+2 \mathrm{NC}$	1 NC
60F	$1 \mathrm{NO}+2 \mathrm{NC}$	1NO
60G	2NC	2NC
60H	4NC	/
601	3NC	1NO
60L	$2 \mathrm{NO}+1 \mathrm{NC}$	1NC
60M	$2 \mathrm{NO}+1 \mathrm{NC}$	1NO
60N	$1 \mathrm{NO}+1 \mathrm{NC}$	2NO
60P	1 NC	3NC
60R	$2 \mathrm{NO}+2 \mathrm{NC}$	/
60S	1 NC	$2 \mathrm{NO}+1 \mathrm{NC}$
60T	1NC	$1 \mathrm{NO}+2 \mathrm{NC}$
60 U	/	4NC
60V	2NC	2NO
60X	1NO	3NC
60Y	1NO	$1 \mathrm{NO}+2 \mathrm{NC}$
61A	/	$1 \mathrm{NO}+3 \mathrm{NC}$
61B	1	$2 \mathrm{NO}+2 \mathrm{NC}$
61C	1	$3 \mathrm{NO}+1 \mathrm{NC}$
61D	1NC	3NO
61E	1NO	$2 \mathrm{NO}+1 \mathrm{NC}$
61G	2NO	$1 \mathrm{NO}+1 \mathrm{NC}$
61H	2NO	2NC
61M	3NO	1NC
61R	$1 \mathrm{NO}+3 \mathrm{NC}$	/
61S	$3 \mathrm{NO}+1 \mathrm{NC}$	1

Note: contact blocks 60U, 61A, 61B, 61C cannot
be combined with operating principles D6D, D7D, D7E.

Operating principle

D1D locked actuator with de-energised solenoid. With sealable auxiliary release.

D1E locked actuator with energised solenoid locked actuator with de-energised solenoid. With auxiliary key release.
locked actuator with de-energised solenoid.
D6D With auxiliary key release and escape release button.
locked actuator with de-energised solenoid. sealable auxiliary release and escape release button.

D7E locked actuator with energised solenoid. With escape release button.

Auxiliary release options
 (only for articles FY $\cdots 00$ D5D ∞, FY $\cdots 0^{\text {D6D }} \cdots$)

The key can be removed in locked and unlocked actuator position (standard) tion of the actuator

V70 Key release with triangular key with spring return (description at page 13)
V73 Key release with triangular key, no spring return (description at page 13)

Ambient temperature

$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$

Pre-installed connectors

without connector (standard)
K110 M12 metal connector, 12-pole, bottom
K800 M23 metal connector, 12-pole, bottom
K820
M23 metal connector, 19-pole, bottom, configuration 1
...
or the complete list of possible combinations please contact our technical department Note: The 19-pole M23 connector is available only for the versions with built-in control devices and a power supply voltage of 24 Vdc .

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating

Actuators

without actuator (standard)
F20 straight actuator VF KEYF20
F21 angled actuator VF KEYF21
F22 actuator with rubber pads VF KEYF22
F28 universal actuator VF KEYF28

Button configurations

N01 configuration 01
N02 configuration 02
N03 configuration 03
... other configurations on request
Release button length
for max. 15 mm wall thickness (standard)
LP30 for max. 30 mm wall thickness
LP40 for max. 40 mm wall thickness
LP60 for max. 60 mm wall thickness
LPRG adjustable, for wall thickness from 60 mm to 500 mm

Signalling LEDs

A two green LEDs switched-on by the solenoid power supply
B red and green LEDs, freely configurable
C orange and green LEDs, freely configurable
Z without LED

Solenoid supply voltage

$024 \mathrm{Vac} / \mathrm{dc}(-10 \% \ldots+10 \%)$
$1120 \mathrm{Vac} / \mathrm{dc}(-15 \% \ldots+10 \%)$
$2230 \operatorname{Vac}(-15 \% \ldots+10 \%)$
$312 \mathrm{Vdc}(-15 \% \ldots+20 \%)$

Main features

- Actuator holding force $F_{1 \text { max }}: 2800 \mathrm{~N}$
- 30 contact blocks with 4 contacts
- Technopolymer housing, three M20 conduit entries
- Protection degrees IP67 and IP69K
- Versions with key release and escape release button
- Versions with integrated control devices
- 4 stainless steel actuators
- Head and release devices, individually turnable and non-detachable
- Signalling LEDs
- Operation with energised or de-energised solenoid

Quality marks:

IMQ approval:	Pending
UL approval:	Pending
CCC approval:	Pending

Technical data

Housing
Housing made of glass fibre reinforced technopolymer, self-extinguishing and shock-proof Metal head and release device, powder-coated and fired in a kiln
Three knock-out threaded conduit entries:
Protection degree:

Protection degree with control devices:
M20×1.5 (standard)
IP67 acc. to EN 60529 (with cable gland of equal or higher rotetection degree)
IP69K acc. to ISO 20653 (Protect the cables from direct thigh-pressure and high-temperature jets)

General data

SIL (SIL CL) up to:
Performance Level (PL) up to:
Interlock with mechanical lock, coded:
Coding level:
Safety parameters:
B_{100} :
Mission time:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $\mathrm{F}_{1 \max }$:
Max. holding force $F_{z h}$:
Maximum clearance of locked actuator:
Released actuator extraction force:
Tightening torques for installation:
Wire cross-sections and
wire stripping lengths:
IP65 acc. to EN 60529

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 2 acc. to EN ISO 14119
low acc. to EN ISO 14119
5,000,000 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ (standard)
$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ (T6 option)
600 operating cycles/hour
1 million operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
2800 N acc. to EN ISO 14119
2150 N acc. to EN ISO 14119
4.5 mm

30 N
See page 379 - Safety Catalogue
See page 399 - Safety Catalogue

Solenoid

Duty cycle: 100% ED (continuous operation)
Solenoid protection 12 V :
Solenoid protection 24 V :
Solenoid protection 120 V :
Solenoid protection 230 V :
Solenoid consumption:
type gG fuse 1 A
type gG fuse 0.5 A
fuse 315 mA , delayed
fuse 315 mA , delayed 9 VA

In compliance with standards:

EN 60947-5-1, EN 60947-1, EN 60204-1, EN ISO 14119, EN ISO 12100, EN 60529,
EN 61000-6-2, EN 61000-6-3, EN IEC 63000, BG-GS-ET-15, UL 508, CSA 22.2 N. 14.
Approvals:
EN 60947-5-1, UL 508, CSA 22.2 N. 14, GB/T14048.5
Compliance with the requirements of:
Machinery Directive 2006/42/EC, EMC Directive 2014/30/EU, RoHS Directive 2011/65/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
§. If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter Utilization requirements from page 377 to page 392 of the General Catalogue Safety 2021-2022.

Electrical data of the contact block of the switch			Utilization category
	Thermal current $\left(l_{\text {th }}\right)$: Rated insulation voltage (U_{i}): Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$: Conditional short circuit current: Protection against short circuits: Pollution degree:	```10 A 400 Vac 300 Vdc 6 kV 1000 A acc. to EN 60947-5-1 type gG fuse 10 A 500 V 3```	
	Thermal current ($\left.\right\|_{\text {th }}$): Rated insulation voltage (U_{i}): Protection against short circuits: Pollution degree:	```8A 250 Vac 300 Vdc type gG fuse 8 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ $U_{\text {e }}(\mathrm{V})$ 120 250 I el $_{\text {e }}(\mathrm{A})$ 6 5 Direct current: DC13 $\mathrm{U}_{\mathrm{e}}(\mathrm{V})$ 24 125 250 I $_{\mathrm{e}}(\mathrm{A})$ 3 0.7 0.4
	Thermal current $\left(l_{\text {th }}\right)$: Rated insulation voltage (U_{i}): Protection against short circuits: Pollution degree:	$\begin{aligned} & 3 \mathrm{~A} \\ & 30 \mathrm{Vac} 36 \mathrm{Vdc} \\ & \text { type gG fuse } 1 \mathrm{~A} \\ & 3 \end{aligned}$	Alternating current: $\mathrm{AC} 15(50 \div 60 \mathrm{~Hz})$ $U_{\mathrm{e}}(\mathrm{V})$ I $_{e}(\mathrm{~A})$ Direct current: DC13 $U_{e}(\mathrm{~V})$ $I_{e}(\mathrm{~A})$
	Thermal current $\left(l_{\text {th }}\right)$: Rated insulation voltage (U_{i}): Protection against short circuits: Pollution degree:	1.5 A 30 Vac 36 Vdc type gG fuse 1.5 A 3	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ I (A) $\quad 1.5$ Direct current: DC13 $U_{e}(V) \quad 24$ $I_{e}(A) \quad 1.5$

Operating principle

The operating principle of these safety switches allows three different operating states:
state A: with inserted and locked actuator
state B: with inserted but not locked actuator
state C: with extracted actuator
All or some of these states can be monitored by means of electrical NO contacts or NC contacts with positive opening by selecting the appropriate contact blocks. In detail, contact blocks that have electric contacts marked with the symbol of the solenoid ($\boxed{\nabla}$) are switched in the transition between the state A and state B, while the electric contacts marked with the symbol of the actuator (■f) are switched between state B and state C.

Operating principle

Select from two operating principles for actuator locking

- Operating principle \mathbf{D} : locked actuator with de-energised solenoid. The actuator is released by applying the power supply to the solenoid (see example of the operating phases).
- Operating principle E: locked actuator with energised solenoid. The actuator is released by switching off the power supply to the solenoid. This version should only be used under certain conditions, since a power failure at the system will result in the immediate opening of the guard.

Example: operating phases with FY 60AD1D0A-F21 (switch with operating principle D)

Selection table for switches

[^0]
Selection table for switches

Contact type $\mathbf{L}=\text { slow action }$																	
Operating principle	Operating principle D， button，	，with key n，witho	key rel out act	release，esca ctuator	pe release		Operating principle with	D，with thout ac		pe release	button，		Operating principle with			cape release ator	button，
Unità di contatto				$=\triangle$	자주					$\pm \triangle$	다아					$=\triangle$	다우
60A L	FY 60AD6D0A	\longrightarrow	$\Theta 1$	$1 \mathrm{NO}+1 \mathrm{NC}$	1NO＋1NC		FY 60AD7D0A	W	Θ	NO＋1NC	1NO＋1NC		FY 60AD7E0A	Tr		NO +1 NC	1NO＋1NC
60B L	FY 60BD6D0A	\leftrightarrow	Θ	2NC	1NO＋1NC		FY 60BD7D0A		Θ	2NC	1NO＋1NC		FY 60BD7E0A	T		2NC	NO＋1NC
60C L	FY 60CD6D0A	\square	Θ	3NC	1 NC		FY 60CD7D0A	W	Θ	3NC	1 NC		FY 60CD7E0A	\square		3NC	1 NC
60D L	FY 60DD6D0A	\checkmark	$\Theta 1$	$1 \mathrm{NO}+1 \mathrm{NC}$	2NC		FY 60DD7D0A	W	Θ	$\mathrm{O}+1 \mathrm{NC}$	2NC		FY 60DD7E0A	－		$1 \mathrm{NO}+1 \mathrm{NC}$	2NC
60E L	FY 60ED6D0A	\checkmark	$\Theta 1$	$1 \mathrm{NO}+2 \mathrm{NC}$	1NC		FY 60ED7D0A	\square		$\mathrm{NO}+2 \mathrm{NC}$	1NC		FY 60ED7E0A	＋		$1 \mathrm{NO}+2 \mathrm{NC}$	1NC
60F L	FY 60FD6D0A	\square	$\Theta 1$	$1 \mathrm{NO}+2 \mathrm{NC}$	1NO		FY 60FD7D0A	\square	Θ	$\mathrm{NO}+2 \mathrm{NC}$	1NO		FY 60FD7E0A	－		$1 \mathrm{NO}+2 \mathrm{NC}$	1NO
60G L	FY 60GD6D0A	凹	Θ	2 NC	2NC		FY 60GD7D0A	\square	Θ	2 NC	2NC		FY 60GD7E0A			2NC	2NC
60 H L	FY 60HD6D0A	\square	Θ	4NC	1		FY 60HD7D0A	\square	Θ	4NC	1		FY 60HD7E0A	山		4 NC	1
601 L	FY 60ID6D0A	\square	Θ	3 NC	1NO		FY 60ID7D0A	\square	－	3 NC	1NO		FY 60ID7E0A	＋		3NC	1NO
60L L	FY 60LD6D0A	\checkmark	$\Theta 2$	$2 \mathrm{NO}+1 \mathrm{NC}$	1NC		FY 60LD7D0A	\square	Θ	$2 \mathrm{NO}+1 \mathrm{NC}$	1NC		FY 60LD7E0A	$\xrightarrow{\square}$		$2 \mathrm{NO}+1 \mathrm{NC}$	1NC
60M L	FY 60MD6D0A	\square	$\Theta 2$	$2 \mathrm{NO}+1 \mathrm{NC}$	1NO		FY 60MD7D0A	\square		NO＋1NC	1NO		FY 60MD7E0A	T	Θ	$2 \mathrm{NO}+1 \mathrm{NC}$	1NO
60 N L	FY 60ND6D0A	凹	$\Theta 1$	$1 \mathrm{NO}+1 \mathrm{NC}$	2NO		FY 60ND7D0A	W		$\mathrm{NO}+1 \mathrm{NC}$	2 NO		FY 60ND7E0A	\square		$1 \mathrm{NO}+1 \mathrm{NC}$	2NO
60P L	FY 60PD6D0A	\checkmark	Θ	1NC	3NC		FY 60PD7D0A	\checkmark	－	1 NC	3NC		FY 60PD7E0A	－		1 NC	3NC
60R L	FY 60RD6D0A	\checkmark	$\Theta 2$	$2 \mathrm{NO}+2 \mathrm{NC}$	1		FY 60RD7D0A			NO＋2NC	1		FY 60RD7E0A	$\xrightarrow{\square}$		$2 \mathrm{NO}+2 \mathrm{NC}$	1
60S L	FY 60SD6D0A	\square	Θ	1NC	$2 \mathrm{NO}+1 \mathrm{NC}$		FY 60SD7D0A		Θ	1 NC	2 $\mathrm{NO}+1 \mathrm{NC}$		FY 60SD7E0A	－		1 NC	$2 \mathrm{NO}+1 \mathrm{NC}$
60 T L	FY 60TD6D0A	\square	Θ	1NC	1NO＋2NC		FY 60TD7D0A			1NC	1 $\mathrm{NO}+2 \mathrm{NC}$		FY 60TD7E0A	－		1NC	$1 \mathrm{NO}+2 \mathrm{NC}$
60 V L	FY 60VD6D0A	\checkmark	Θ	2NC	2NO		FY 60VD7D0A	\square	Θ	2NC	2NO		FY 60VD7E0A	\checkmark		2NC	2NO
60X L	FY 60XD6D0A		Θ	1NO	3NC		FY 60XD7D0A		Θ	1NO	3NC		FY 60XD7E0A			1NO	3NC
60 Y L	FY 60YD6D0A		Θ	1NO	1NO＋2NC		FY 60YD7D0A		Θ	1NO	1 $\mathrm{NO}+2 \mathrm{NC}$		FY 60YD7E0A			1NO	$1 \mathrm{NO}+2 \mathrm{NC}$
61D L	FY 61DD6D0A	凹	Θ	1NC	3NO		FY 61DD7D0A	T	Θ	1 NC	3NO		FY 61DD7E0A	T		1 NC	3NO
61E L	FY 61ED6D0A		Θ	1NO	$2 \mathrm{NO}+1 \mathrm{NC}$		FY 61ED7D0A		Θ	1 NO	2NO＋1NC		FY 61ED7E0A			1NO	$2 \mathrm{NO}+1 \mathrm{NC}$
61G L	FY 61GD6D0A			2NO	1NO＋1NC		FY 61GD7D0A		Θ	2NO	$1 \mathrm{NO}+1 \mathrm{NC}$		FY 61GD7E0A			2NO	$1 \mathrm{NO}+1 \mathrm{NC}$
61 H L	FY 61HD6D0A			2NO	2NC		FY 61HD7D0A			2NO	2NC		FY 61HD7E0A			2NO	2NC
61M L	FY 61MD6D0A			3NO	1 NC		FY 61MD7D0A		Θ	3NO	1NC		FY 61MD7E0A			3NO	1 NC
61R L	FY 61RD6D0A	\square	$\Theta 1$	$1 \mathrm{NO}+3 \mathrm{NC}$	1		FY 61RD7D0A			$\mathrm{NO}+3 \mathrm{NC}$	1		FY 61RD7E0A	\square		$1 \mathrm{NO}+3 \mathrm{NC}$	1
61 S L	FY 61SD6D0A	凹	$\Theta 3$	$3 \mathrm{NO}+1 \mathrm{NC}$	1		FY 61SD7D0A	l		$3 \mathrm{NO}+1 \mathrm{NC}$	1		FY 61SD7E0A			$3 \mathrm{NO}+1 \mathrm{NC}$	1
Actuating force	$30 \mathrm{~N}(60 \mathrm{~N} \Theta)$																
Travel diagrams	Page 131 －General Catalogue Safety 2021－2022																

Legend：Θ With positive opening according to EN 60947－5－1，\downarrow interlock with lock monitoring acc．to EN ISO 14119
Note：Refer to pages 127－128 of the General Catalogue Safety 2021－2022 for the position of the contacts in the states of the switch．
Note：See pages 17－18 for the connection diagrams for M12 and M23 connector contact blocks．

FY series safety switches with separate actuator with lock

Switch with integrated field-wireable control devices

Internal connections (version with integrated control devices to be connected)

Internal terminal strip switch contact blocks

Internal terminal strip integrated control devices

Note: Refer to pages 127-128 of the General Catalogue Safety 2021-2022 for the position of the contacts in the states of the switch.

FY series safety switches with separate actuator with lock

Switch with integrated control devices and M23 connector, 19-pole

Internal connections (version with integrated control devices)

M23 connector, 19-pole

$\begin{aligned} & \text { FY 60000000-N01K820 } \\ & \text { FY 6000000-N02K820 } \end{aligned}$	FY 60000000-N03K821 FY $6000000-$ N12K821	FY 6000000-N04K822 FY 6000000-N05K822 FY 6000000-N06K822	$\begin{aligned} & \text { FY 60000000-N07K823 } \\ & \text { FY 6000000-N08K823 } \\ & \text { FY 6000000-N09K823 } \\ & \text { FY 600000-N10K823 } \end{aligned}$	FY 6000000-N11K824

FY series safety switches with separate actuator with lock

Stainless steel actuators

IMPORTANT: These actuators can be used only with items of the FG and FY series (e.g. FY 60AD1D0A-F20)
Low level of coding acc. to EN ISO 14119.

| Article | Description | |
| :--- | :--- | :--- | :--- |
| | Article | |
| | VF KEYF20 | Straight actuator |
| | | Description |

Article | Description |
| :---: |

Universal actuator VF KEYF28

IMPORTANT: These actuators can be used only with items of the FG and FY series (e.g. FY 60AD1D0A-F28).
Low level of coding acc. to EN ISO 14119.

Jointed actuator for guards with poor alignment, adjustable in two dimensions for small doors; can be mounted in various positions. The metal fixing body has two pairs of bore holes; it is provided for rotating the working plane of the actuator by 90°.

Auxiliary key release with triangular key

Articles with the V 70 and $\vee 73$ option have an auxiliary key release with a triangular key that meets DIN 22417 standards.
This type of lock can be used in situations where the switch must only be unlocked using the corresponding triangular key, a tool which is not usually available.
There are two versions of the triangular key release: with a spring return (option V70) and without a spring return (option V73).

Dimensional drawings

Switch FY 6 $0^{\circ D 1 E \oplus}$
Operating principle E
Switch FY 6*D5D••
Operating principle D,
with key release

Switch FY 6**D6D*

Operating principle E
with auxiliary key release and escape release button

Switch FY 6eoe000 with integrated control devices

$X=$ see page 15

Switch FY 6••D7D••

Operating principle D
with sealable auxiliary release and escape release button

Actuator VF KEYF21

Actuator VF KEYF22

Actuator VF KEYF20

FY series safety switches with separate actuator with lock

Available integrated devices					
	Description	Colour	Article	Combinable with contacts (1)	Protrusion (x) mm
	Illuminated button, spring-return	White Red Green Yellow Blue	VN NG-AC27121 VN NG-AC27123 VN NG-AC27124 VN NG-AC27125 VN NG-AC27126	$\begin{gathered} \text { 1NO } \\ \text { (1NC) } \\ \text { (2NO) } \\ \text { (1NO+1NC) } \end{gathered}$	3
	Non-illuminated button, spring-return	- Black	VN NG-AC27122	$\begin{gathered} 1 \mathrm{NO} \\ (1 \mathrm{NC}) \\ (2 \mathrm{NO}) \\ (1 \mathrm{NO}+1 \mathrm{NC}) \end{gathered}$	3
	Non-laser-markable, illuminated, projecting push button ${ }^{(2)}$	- Red	VN NG-AC26018	$\begin{gathered} 1 \mathrm{NO} \\ \text { (1NC) } \\ \text { (2NO) } \\ (1 \mathrm{NO}+1 \mathrm{NC}) \end{gathered}$	6,1
	Indicator light		VN NG-AC26060 VN NG-AC26061 VN NG-AC26062 VN NG-AC26063 VN NG-AC26064	1	2,7
	Emergency stop button acc. to. EN ISO 13850 Rotary release Push-pull release	$\begin{aligned} & \text { Red } \\ & \text { Red } \end{aligned}$	VN NG-AC26052 VN NG-AC26055	2NC	26,4
	Emergency stop button for contact blocks with 3 contacts acc. to. EN ISO 13850 Rotary release	- Red	VN NG-AC26056	2NC+1NO	26,4
	Illuminated emergency stop button acc. to. EN ISO 13850 Rotary release Push-pull release	$\begin{aligned} & \text { Red } \\ & \text { Red } \end{aligned}$	VN NG-AC26051 VN NG-AC26054	2NC	26,4
	Simple stop button Rotary release Push-pull release	$\begin{aligned} & \text { Black } \\ & \text { Black } \end{aligned}$	VN NG-AC26053 VN NG-AC26057	2NC	26,4
	Illuminated selector switch with handle, with transparent lens for LED	- Black Black Black - Black	VN NG-AC26033 VN NG-AC26030 VN NG-AC26034 VN NG-AC26031	$\begin{gathered} 1 \mathrm{NO} \\ 1 \mathrm{NC} \\ (2 \mathrm{NO}) \\ \text { (1NO+1NC) } \end{gathered}$	16,8
	Key selector switch, 2 positions	Black Black Black	VN NG-AC26043 VN NG-AC26040 VN NG-AC26041	$\begin{gathered} \text { 1NO } \\ \text { (1NC) } \\ \text { (2NO) } \\ \text { (1NO+1NC) } \end{gathered}$	$\begin{aligned} & 39 \text { (a) } \\ & 14 \text { (b) } \end{aligned}$
-	Closing cap	- Black	VN NG-AC26020	1	2,7
	Fixing key	- Black	VN NG-AC26080	I	1
Legend:	$V_{\text {Maintained }} \quad \nabla_{\text {Spring-return }} \quad 8$ Key ex	action positio	(a) w	key	without key

${ }^{(1)}$ The contacts in brackets are on request. Contact our technical department to verify the effective feasibility of the control panel with the chosen combination of control devices.
${ }^{(2)}$ The projecting buttons are not laser markable.
To order buttons with marking:
add the marking code indicated in the tables on pp. 159-162 to the article codes of the General Catalogue HMI 2021-2022.
Example: Black spring-return button with "O" engraving
VN NG-AC27122 \rightarrow VN NG-AC27122-L1

Technical data of the integrated control devices

General data

Protection degree:
Mechanical endurance:
Spring-return button:
Emergency stop button:
Selector switch:
Key selector switch:
IP65 acc. to EN 60529
1 million operating cycles
50,000 operating cycles
300,000 operating cycles
50,000 operating cycles
30,000 operating cycles including removal of the key
Safety parameter B_{100} :
100,000 (emergency stop button)

Actuating force

Spring-return button: 4 N min
Emergency stop button: 20 N min
Selector switch:
Key selector switch:
0.1 Nm min
0.1 Nm min

100 N max.
100 N max.
1.5 Nm max.
1.3 Nm max.

Contact blocks of the control devices

Material of the contacts: silver contacts
Contact type:
Self-cleaning contacts with double interruption

Electrical data:

Thermal current t_{th} : 1 A
Rated insulation voltage U_{i} : $\quad 32 \mathrm{Vac} / \mathrm{dc}$
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$: $\quad 1.5 \mathrm{kV}$
LED supply voltage:
LED supply current:
$24 \mathrm{Vdc} \pm 15 \%$
10 mA per LED

Utilization category of the contact block:
 Direct current: DC13

$\mathrm{U}_{\mathrm{e}}(\mathrm{V}) 24$
$\mathrm{I}_{\mathrm{e}}{ }^{\mathrm{e}}(\mathrm{A}) \quad 0.55$

In compliance with standards:

IEC 60947-5-1, IEC 60947-5-5, EN ISO 13850

\. Installation for safety applications:

Always connect the safety circuit to the NC contacts (normally closed contacts) as stated in standard EN 60947-5-1.

Accessories

Release button

| Article | Description |
| :---: | :--- | :--- |
| VF FG-LP15 | Technopolymer release button for max. 15 mm wall thickness, supplied with
 screw |
| VF FG-LP30 | Technopolymer release button for max. 30 mm wall thickness, supplied
 with screw |
| VF FG-LP40 | Technopolymer release button for max. 40 mm wall thickness, supplied
 with screw |
| VF FG-LP60 | Metal release button for max. 60 mm wall thickness, supplied with screw |

FY series safety switches with separate actuator with lock

Wiring diagram for M23 connectors

```
M23 connector, 12-pole
```


M23 connector，19－pole

$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~A} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 60 B \\ 1 \text { NO+3NC } \end{gathered}$		$\begin{aligned} & \text { Contact block } \\ & \text { 60C } \\ & 4 \mathrm{NC} \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & \text { 60D } \\ & \text { 1NO+3NC } \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & 60 E \\ & 1 \text { NO }+3 \text { NC } \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~F} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & \text { 60G } \\ & \text { 4NC } \end{aligned}$		Contact block 60 H 4NC		$\begin{aligned} & \text { Contact block } \\ & 601 \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~L} \\ & 2 N O+2 N C \end{aligned}$	
Contacts	Pin no．	Contacts	Pin no ．	Contacts	Pin no ．	Contacts	Pin no．	Contacts	Pin no ．	Contacts	Pin no ．	Contacts	Pin no．	Contacts	Pin no ．	Contacts	Pin no ．	Contacts	in no．
A1－A2	1－2	A1－A2	1－2	A1－A2	－2	A1－A2	1－2												
NC．eßs	3－4	NC $=\triangle$	3－4	NC	3－4	NO	3－4	NC	3－4	NC $=\square$	3－4	NC	3－4	NC	3－4	NC $=\square$	3－4	NC E．fer	3－4
NC $=\square$	5－6	NC $=\triangle$	5－6	NC $=\triangle$	5－6	NC $=\square$	5－6	NC $=\square$	5－6	NC $=\triangle$	5－6	NC＝	5－6	NC $=$	5－6	NC	5－6	NC	5－6
NO $=\triangle$	7－8	NC Fofs	7－8	NC $=\triangle$	7－8	NC Fefs	7－8	NC．efs	7－8	NO $=\triangle$	7－8	NC．6．	7－8	NC $=\square$	7－8	NC $=\triangle$	7－8	NO $=\square$	7－8
NOEFAS	9－10	NOEfer	9－10	NC ¢ ¢	9－10	NC ¢efte	9－10	NO $=\triangle$	9－10	NO．orc	9－10	NC ¢ ¢	9－10	NC $=\triangle$	9－10	NO厄榢	9－10	$\mathrm{NO}=\triangle$	9－10

Contact block 60M $3 \mathrm{NO}+1 \mathrm{NC}$		Contact block 60N $3 \mathrm{NO}+1 \mathrm{NC}$		Contact block 60P 4NC		$\begin{aligned} & \text { Contact block } \\ & 60 R \\ & 2 N O+2 N C \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~S} \\ & 2 N O+2 N C \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & 60 T \\ & 1 \text { NO+3NC } \end{aligned}$		Contact block 60U 4NC		Contact block 60 V $2 \mathrm{NO}+2 \mathrm{NC}$		Contact block60X$1 \mathrm{NO}+3 \mathrm{NC}$		Contact block 60Y $2 \mathrm{NO}+2 \mathrm{NC}$	
ontacts	Pin no．	tacts	Pin no．	tacts	Pin no．	tacts	Pin	tact	Pin	tac	Pin no．	ntac	Pin no．	tac	Pin no．	nta	Pin	Contacts	Pin no．
A1－A2	1－2	A2	1－2	A2	1－2	A2	1－2	－A2	1－2	A2	1－2	－A2	1－2	1－A2	1－2	1－A2	1－2	1－A	1－2
NO ¢ ¢ for	3－4	NO $=\square$	3－4	NC	3－4	NC $=\square$	3－4	NC $=\square$	3－4	NC	3－4	NC 0_{0}	3－4	－	3－4	No	3－4	NC	3－4
NC $=\triangle$	5－6	NC $=\square$	5－6	NC［．］	5－6	∇	5－6	－ofe	5－6	¢	5－6	¢	5－6	NC $-\triangle$	5－6	¢	5－6	NC F．fe	5－6
NO $=\square$	7－8	NO．．fers	7－8	NC $=\triangle$	7－8	NO $=\square$	7－8	NO	7－8	NC ¢ Fefe	7－8	NC［．］阿	7－8	NO．．．近	7－8	NC F．fer	7－8	NO．efe	7－8
No $=\triangle$	9－10	NOE．0．es	9－10	NC F．F｜c	9－10	NO $=\triangle$	9－10	NOE．F｜ce	9－10	NO	9－10	NC ¢FF	9－10	NO 6	9－10	NC ¢FF	9－10	NO $=\triangle$	9－1

$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~A} \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~B} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$		$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{C} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$		Contact block 61D $3 \mathrm{NO}+1 \mathrm{NC}$		Contact block 61E $3 \mathrm{NO}+1 \mathrm{NC}$		$\begin{gathered} \text { Contact block } \\ 61 \mathrm{G} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 61 \mathrm{H} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$		Contact block 61M $3 \mathrm{NO}+1 \mathrm{NC}$		Contact block 61R $1 \mathrm{NO}+3 \mathrm{NC}$		Contact block 61S $3 \mathrm{NO}+1 \mathrm{NC}$	
Contacts	Pin no．	Contacts	Pin no．	ntacts	Pin no．	acts	Pin no．	tact	Pin no	tact	Pin no	ntact	Pin no	ontacts	n	Contac	Pin n	Contac	in no．
A1－A2	1－2	A2	1－2	A2			1－2	A2	1－2	1－A2	1－2		1－2	A1－A2	1－2	A1－A2	1－2	A1－A2	
NC 0_{0}	3－4	NCㅌ．．fes	3－4	NOEFS	3－4	－	3－4	$\mathrm{NO}=\triangle$	3－4	NOC．ers	3－4	－	3－4	$\mathrm{NO}=\triangle$	3－4		3－4	NO $=\triangle$	
NC F^{-1}	5－6	NC Fof	5－6	NC	5－6	NC $=\square$	5－6	NC．6．f	5－6	NC탕	5－6	NC F－FS	5－6	NC．efe	5－6	NC $=\square$	5－6	NC $=\square$	5－6
NC 0_{0}	7－8	NOGorer	7－8	NOEfa	7－8	NOCNT	7－8	NOE．0．fer	7－8	$\mathrm{NO}=\triangle$	7－8	NO $=\square$	7－8	NO $=\triangle$	7－8	NC $=\square$	7－8	NO $=\triangle$	7－8
NO ㄷ．fle	9－10	NO E．fe	9－10	NO ¢f院	9－10		9－10	NOE．e院	9－10	NO $=\triangle$	9－10	$\mathrm{NO}=\square$	9－10	NO $=\triangle$	9－10	NO $=\triangle$	9－10	NO $=\triangle$	9－10

Note：the wires connected to pins 11 and 12 of the M23 12－pole connector can be used to activate the LEDs in FY series configurations with freely connectable LEDs．

Wiring diagram for M12 connectors

M12 connector，12－pole

$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~A} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~B} \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{C} \\ 4 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{D} \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$		Contact block 60E $1 \mathrm{NO}+3 \mathrm{NC}$		$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~F} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & \text { 60G } \\ & \text { 4NC } \end{aligned}$		Contact block 60 H 4NC		$\begin{gathered} \text { Contact block } \\ 601 \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~L} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	
Contacts	Pin no．	Contacts	Pin no．	tacts	Pin no．	Contacts	Pin no．	Contacts	Pin no．	ontacts	Pin no．	Contacts	Pin no．						
A1－A2	1－2																		
	3－4	NC $=\triangle$	3－4	NC $=\triangle$	3－4	NO $=\triangle$	3－4	NC ¢ ¢fer	3－4										
NC $=\triangle$	5－6																		
NO $=\triangle$	7－8	NC Fe\｜s	7－8	NC $=\triangle$	7－8	NC ¢．ßS	7－8	NC F．F®	7－8	NO $=\triangle$	7－8	NC．F．os	7－8	NC $=\triangle$	7－8	NC $=\triangle$	7－8	NO $=\square$	7－8
NO ¢efe	9－10	NO ¢－fer	9－10	NC．eps	9－10	NC Fefs	9－10	NO $=\triangle$	9－10	NO F－Fs	9－10	NC Fefe	9－10	NC $=\triangle$	9－10	NOFers	9－10	NO $=\triangle$	9－10

$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{M} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~N} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$		Contact block 60P 4NC		Contact block 60R $2 \mathrm{NO}+2 \mathrm{NC}$		$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~S} \\ & 2 N O+2 N C \end{aligned}$		$\begin{aligned} & \text { Contact block } \\ & 60 T \\ & 1 N O+3 N C \end{aligned}$		Contact block 60U 4NC		$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~V} \\ & 2 N O+2 N C \end{aligned}$		Contact block 60X $1 \mathrm{NO}+3 \mathrm{NC}$		$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{Y} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	
Contacts	Pin no．	Contacts	Pin no ．	Contacts	Pin no．														
A1－A2	1－2																		
NO 6 －fes	3－4	$\mathrm{NO}=\triangle$	3－4	NC．ers	3－4	NC $=\square$	3－4	NC $=\square$	3－4	NC $=\square$	3－4	NC．ers	3－4	NC $=\square$	3－4	NO $=\triangle$	3－4		3－4
NC $=\triangle$	5－6	NC $=\triangle$	5－6		5－6	NC $=\triangle$	5－6	NC．efs	5－6	NC Fefe	5－6	NC F．FP	5－6	NC $=\triangle$	5－6	NC．efs	5－6	NC E．F｜c	5－6
NO $=\square$	7－8	NO ¢．fer	7－8	NC $=\square$	7－8	NO $=\square$	7－8	NOㅌ．．fe	7－8	NC F－fe	7－8	NC ¢ Fers	7－8	NO¢．．fe	7－8	NC．ers	7－8	NO．efe	7－8
NO $=\square$	9－10	NO	9－10		9－10	NO $=\square$	9－10	NO	9－10	NO	9－10	NC 厄－	9－10	NO	9－10		9－10	NO $=\square$	9－10

Contact block 61A $1 \mathrm{NO}+3 \mathrm{NC}$		$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~B} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$		$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{C} \\ & 3 N O+1 N C \end{aligned}$		$\begin{gathered} \text { Contact block } \\ 61 \mathrm{D} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$		$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{E} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$		$\begin{gathered} \text { Contact block } \\ 61 \mathrm{G} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$		Contact block$\begin{gathered} 61 \mathrm{H} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$		Contact block 61 M $3 \mathrm{NO}+1 \mathrm{NC}$		$\begin{gathered} \text { Contact block } \\ 61 R \\ 1 N O+3 N C \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 61 S \\ 3 N O+1 N C \end{gathered}$	
Contacts	Pin no．	Contacts	Pin no	tact	Pin no．	Contacts	Pin no	Contacts	Pin n ．	ntac	Pin no．	Contacts	Pin n	ontact	Pin n	nta	Pin no．	Conta	n no．
A1－A2	1－2																		
NC ¢ ¢ ${ }_{\text {P }}$	3－4	NC ¢ffer	3－4	NO．．¢区	3－4	NO．．．阝号	3－4	NO $=\triangle$	3－4	NO \odot	3－4	NC ¢ ¢	3－4	NO $=\triangle$	3－4	NC $=\triangle$	3－4	NO $=\triangle$	3－4
NC Fefe	5－6	NC E．fer	5－6	NC F－Fs	5－6	NC $=\triangle$	5－6	NC F－Fers	5－6	NC F．efs	5－6	NC F．न近	5－6	NC F－¢区	5－6	NC $=\triangle$	5－6	NC $=\square$	5－6
NC ¢ ¢	7－8	NO¢f（	7－8	NO ¢ ¢ Fa	7－8	NO ¢．fa		NO	7－8	NO $=\triangle$	7－8	NO $=\triangle$	7－8	NO $=\triangle$	7－8	NC $=\triangle$	7－8	NO $=\triangle$	7－8
NO Fefe	9－10	NO ¢．fß	9－10	NO Fofe	9－10	NO ¢－FS	9－10	NOEFF	9－10	NO $=\triangle$	9－10	NO $=\square$	9－10						

Note：the wires connected to pins 11 and 12 of the M12 connector can be used to activate the LEDs in FY series configurations with freely connectable LEDs．

Website
www.pizzato.com

(1) pizzato
 PASSION FOR QUALITY

Pizzato Elettrica s.r.I. via Torino, 1-36063 Marostica (VI) Italy
Phone: +39 0424470930
E-mail: info@pizzato.com
Website: www.pizzato.com

Any information or application example, connection diagrams included, described in this document are to be intended as purely descriptive. The choice and application of the products in conformity with the standards, in order to avoid damage to persons or goods, is the user's responsibility. The drawings and data contained in this documen are not binding and we reserve the right, in order to improve the quality of our products, to modify them at any time without prior notice. All rights to the contents of this partial of all partial, of all prohibited without written permission from Pizzato Elettrica Srl. All rights reserved © 2022 Copyright Pizzato Eletrica:

[^0]: Legend: Θ With positive opening according to EN 60947-5-1, \checkmark interlock with lock monitoring acc. to EN ISO 14119
 Note: Refer to pages 127-128 of the General Catalogue Safety 2021-2022 for the position of the contacts in the states of the switch.
 Note: See pages 17-18 for the connection diagrams for M12 and M23 connector contact blocks.

